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Motivation

 Where will PEV owners live? What factors influence
adoption?
- Public charging infrastructure
— Distribution and transmission upgrades
- Targeted marketing, sales, and distribution
- Incentive design

* Two Important questions:

- Are there spatial patterns in direct econometric modeling of
consumer hybrid electric vehicle adoption?

- If there are patterns, what factors influence consumer
adoption?

» Use econometric models to estimate influence -
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Modeling Approach:
Single-Parameter

» Spatial heterogeneity modeled as explanatory or
unobserved (residual) variable or both

» Spatial Autoregressive: y=pWy+Xp+e,e~N(0,6°I,)

e Spatial Errors: y=Xp+u,u=AWu+e,e~N(0,0°1,)

« General Spatial: y=pW,y+X p+u,u=k W,u+e,e~N(0,0°I,)
-y Is a vector of observations of PEV adoption
- X Is a matrix of explanatory variables

- p and A are spatial coefficients
- W,W,, and W, are spatial weight matrices
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Modeling Approach:
Spatial Heterogeneity

» Spatial heterogeneity modeled as locational estimates
for all variables

» Geographically Weighted: W;”y=w;?Xp+W ",
- Exponential Decay: W,=+exp(—d./0)

- Gaussian Decay: W,=¢(d,/c0)
- y and X are as before
- W. is the spatial weight matrix for location i

- d; denotes the Euclidean distance between location i and
other locations

- 0,0, and ¢ denote standard deviation of d., bandwidth, and
Gaussian density, respectively
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Data
(Preliminary)

» County-level vehicle registration data for Ohio in 2000
and 2011, obtained from R.L. Polk and Co.

* County-level demographic data from the U.S. Census
Bureau

- Independent variable: county-level HEV adoption percentage
- Dependent Variables:

 Smog check county
 Median age (average: 39.1 years)

» Percent of population with annual income greater than or equal to
$60,000 (average: 36.6%)

* Percent of population with a bachelor’s degree or higher (average:
23.0%)

« Population per square mile (average: 290 people per square mile)
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Data

Spatial Adoption Maps
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Results (2000)
Summary Statistics

 Mean: 1.94 cars

» Standard Deviation: 3.78 cars

e Min: O

e Max: 22

Total: 171 cars

* Number of counties within sample: 88

Excludes out-of-state registrations
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Results (2000)
Model Estimates

Variable Estimate

Constant 1.01

Smog -0.46
Median Age -0.10**
Income 0.02

Education 0.08
Pop. Density 1.5e-3***
P 0.15%**

Standard

Error
0.29
0.08
0.01
0.00
0.01
0.00
0.01

p-value

0.36
0.28
0.05
0.22
0.14
0.01
0.00

NB: *** ** and * denote significance at 0.01, 0.05, and 0.10 levels,

respectively
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Results (2011)
Summary Statistics

e Mean: 553.47 cars

» Standard Deviation: 1,143.57 cars

e Min: 13

« Max: 6,762

» Total: 48,705 cars

* Number of counties within sample: 88
» Excludes out-of-state registrations
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Results (2011)
Model Estimates

Variable Autoreg  Spatial Error General Spatial Exponential Gaussian
Constant 0.09 0.12 0.23 0.11 0.12
Smog -0.03 -0.03 -0.02 -0.04 -0.04
Median Age -0.02*%**  -0.02*** -0.02%** -0.02*** -0.02%**
Income 0.01*** 0.01*** 0.01*** 0.01*** 0.01***
Education 0.02*** 0.02*** 0.02*** 0.02** 0.02**
Pop. Density  7.3e-5***  8.4g-5*** 8.6e-5*** SE-5*** BE-H***
P 0.11 -0.09***

0 4.08 2.80

A 0.22 1.68***

R2 0.81 0.82 0.90 0.82 0.81
Log-likelihood 128.67 128.99 132.32

NB: *** ** and * denote significance at 0.01, 0.05, and 0.10 levels,

respectively i
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Conclusions

* More-educated people, people with higher income,
and counties with high population density are more
likely to adopt PEVs

* Older people are less likely to adopt PEVs

» Spatial correlation is present in the 2000 and 2011
data

- Spatial models are needed, otherwise parameter estimates
are inconsistent

» Although current adoption in one county negatively
Influences adoption in neighboring counties Iin the
2011 data, spatial heterogeneity that positively
Influences adoption is not fully modeled
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Future Work

* Work with finer-grained adoption data

- In talks with Ohio Bureau of Motor Vehicles

— Our understanding of the law is that we can obtain VINs at
the street address level

- Currently have a preliminary dataset at the tax-district level,
while awaiting these

» Cross-reference with census block demographic and
socioeconomic data

» Should provide more robust spatial correlation
estimates
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Applications

* |[nform ongoing work examining PEV Integration,
iIncluding:
- Optimal location of public chargers
- Transformer aging and charging control algorithm testing
- Network upgrade planning
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